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Previous studies investigating signal integration in
circular Glass patterns have concluded that the
information in these patterns is linearly summed across
the entire display for detection. Here we test whether an
alternative form of summation, probability summation
(PS), modeled under the assumptions of Signal Detection
Theory (SDT), can be rejected as a model of Glass pattern
detection. PS under SDT alone predicts that the
exponent b of the Quick- (or Weibull-) fitted
psychometric function should decrease with increasing
signal area. We measured spatial integration in circular,
radial, spiral, and parallel Glass patterns, as well as
comparable patterns composed of Gabors instead of dot
pairs. We measured the signal-to-noise ratio required for
detection as a function of the size of the area containing
signal, with the remaining area containing dot-pair or
Gabor-orientation noise. Contrary to some previous
studies, we found that the strength of summation never
reached values close to linear summation for any stimuli.
More importantly, the exponent b systematically
decreased with signal area, as predicted by PS under
SDT. We applied a model for PS under SDT and found
that it gave a good account of the data. We conclude
that probability summation is the most likely basis for
the detection of circular, radial, spiral, and parallel
orientation-defined textures.

Introduction

Whereas neurons in the early stages of cortical visual
processing have small receptive fields and respond to

only small regions of the visual scene, neurons in the
higher processing stages tend to have larger receptive
fields and respond to larger regions. A longstanding
issue in visual science is thus: to what global properties
of visual patterns are higher-stage neurons sensitive? In
this communication we address this issue with respect
to the global properties of concentric, orientation-
defined textures, of which one form is the well-known
Glass pattern.

Historically, neurons in the primary visual cortex (V1)
were considered to act like filters tuned to orientation
and spatial frequency (SF; Hubel & Wiesel, 1962; 1968).
More recent work has revealed a more complex picture
of nonlinear behavior that depends on stimulation from
within, as well as from outside the classical receptive
field, including contrast normalization, long-range inter-
actions, surround suppression, and cross orientation
inhibition (Carandini & Heeger, 2011; Loffler, 2008, for
review). It has been suggested that beyond V1 the visual
processing hierarchy follows two prominent pathways,
the dorsal and the ventral stream (Goodale & Milner,
1992; Ungerleider & Mishkin, 1982), with the ventral
stream mediating shape and form perception. Along the
ventral stream, neurons in V2 and V4 are selectively
responsive to more complex stimuli such as angles, arcs,
and circles as well as hyperbolic and polar gratings
(Anzai, Peng, & Van Essen, 2007; Gallant, Connor,
Rakshit, Lewis, & Van Essen, 1996; Hegdé & Van Essen,
2007). Other studies have found cells in V4 tuned to
stimuli with specific contour features, e.g., convex
curvature, relative to the shape’s center (Pasupathy &
Connor, 1999; 2002; Yau, Pasupathy, Brincat, &
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Connor, 2012). In inferotemporal cortex (IT) neurons
exist that are selective for complex shapes and objects
such as faces (Desimone, Albright, Gross, & Bruce, 1984;
Tanaka, 1996; Tsao & Livingstone, 2008).

These findings underscore the idea that the encoding
of objects and shapes is accomplished by a hierarchical
feedforward process along the ventral pathway (Cadieu
et al., 2007; Serre, Kouh, Cadieu, Knoblich, & Krei-
man, 2005; Serre, Oliva, & Poggio, 2007; Van Essen,
Anderson, & Felleman, 1992). The question that arises
is how local information detected in the early visual
areas is integrated to encode more complex stimuli at
subsequent stages.

Psychophysically, this has been tested in various ways.
A popular approach is to determine the minimum
number of signal elements required to detect the presence
of a global pattern embedded in an array of noise
elements. Such ‘‘coherence thresholds’’ have been used in
a range of studies of motion (Braddick, O’Brien,Wattam-
Bell, Atkinson, & Turner, 2000; Newsome, 1988), texture
(Dakin, 1997; Wilson & Wilkinson, 1998; Wilson,
Wilkinson, & Asaad, 1997), and contour perception
(Achtman, Hess, & Wang, 2003; Braddick et al., 2000;
Schmidtmann, Gordon, Bennett, & Loffler, 2013).
Coherence thresholds in Glass patterns (Glass, 1969;
Glass & Perez, 1973) have been employed to investigate
signal integration in texture perception (Dakin, 1997;
Dakin & Bex, 2002; Dickinson, Broderick, & Badcock,
2009; Wilson et al., 1997; Wilson & Wilkinson, 1998).
Glass patterns are composed of an array of randomly
positioned dot pairs, or ‘‘dipoles.’’ The spatial relation-
ship between dot pairs can be used to define the geometry
of the global texture, e.g., circular, radial, parallel, etc.,
which cannot be detected on a purely local level. Current
models of Glass pattern detection assume a two-stage
process, in which the first stage extracts local orientation
information while the second stage integrates the
orientation information in order to extract the global
stimulus structure (Wilson et al., 1997; Wilson &
Wilkinson, 1998). This two-stage model is supported by
physiological studies in macaques showing that neither
the classical receptive fields nor surround mechanisms in
early visual areas (V1, V2) are sufficient to process the
Glass pattern’s geometry (Smith, Bair, &Movshon, 2002;
Smith, Kohn, Movshon, & Movshon, 2007).

A number of studies have suggested that the global
structure in Glass patterns is processed by specialized
detectors for circular and radial textures (e.g., Kelly,
Bischof, Wong-Wylie, & Spetch, 2001; Kurki & Saar-
inen, 2004; Seu & Ferrera, 2001; Wilson et al., 1997;
Wilson & Wilkinson, 1998). Some of these studies
measured area summation for various types of Glass
pattern, in which the stimulus array was subdivided into
various sectors of increasing size. The linear summation
prediction, which is that the decrease in threshold with
increasing signal area follows a power-law function with

a (log-log) slope of close to�1.0, was found only for
circular Glass patterns (Wilson et al., 1997; Wilson &
Wilkinson, 1998; cf. Dakin & Bex, 2002; Kurki,
Laurinen, Peromaa, & Saarinen, 2003). Note, however,
that a slope of�1.0 for linear summation is predicted
only if the detection thresholds are expressed in terms of
the proportion of signal elements within the signal
sectors; if expressed in terms of the total number of signal
elements, a slope of�1.0 would not be predicted.
Furthermore, at least under the framework of Signal
Detection Theory (SDT; see the following material),
linear summation only predicts a slope of�1.0 in
experiments where extrinsic uncertainty is introduced,
either by employing an interleaved design or by
randomly designating the angular orientation or ‘‘clock
position’’ of the sectors containing the signal. The latter
method has been employed in the experiments described
here. If, on the other hand, a blocked design is employed,
an optimal observer will benefit from using smaller
integration windows that are matched to the signal area.
In this case, linear summation predicts a slope of�1/2,
owing to the summation of noise variances. The near
�1.0 slopes observed in previous studies (Wilson et al.,
1997; Wilson & Wilkinson, 1998; cf. Dakin & Bex, 2002;
Kurki et al., 2003) were taken as psychophysical evidence
for the existence of specialized global detectors for
circular Glass patterns. In keeping with these results, it
has been suggested that the Glass pattern’s global
structure is encoded in higher extrastriate areas (e.g., V4)
by neurons with relatively large receptive fields, ones also
selectively responsive to complex stimuli such as polar
and hyperbolic gratings (Anzai et al., 2007; Gallant et al.,
1996; Hegdé & Van Essen, 2007). Also in keeping are
electrophysiological and imaging studies that demon-
strated neural responses to radial and circular Glass
patterns in V4 and LOC (Ostwald, Lam, Li, & Kourtzi,
2008; Pei, Pettet, Vildavski, & Norcia, 2005).

However, it is important to bear in mind that in
some of these studies the measured summation slopes
were much lower than predicted by linear summation
(Dakin & Bex, 2002; Kurki et al., 2003; see Discussion
for details). In spite of this, probability summation (PS)
was not considered as a possible explanation for the
weaker summation.

The model of PS that one might wish to test here is
critical. Most studies on area summation have used PS
models based on High Threshold Theory (HTT; e.g.,
Bell & Badcock, 2008; Dickinson, Han, Bell, &
Badcock, 2010; Dickinson, McGinty, Webster, &
Badcock, 2012; Loffler, Wilson, & Wilkinson, 2003;
Meese & Williams, 2000; Morrone, Burr, & Vaina,
1995; Mullen, Beaudot, & Ivanov, 2011; Schmidtmann,
Kennedy, Orbach, & Loffler, 2012; Tan, Dickinson, &
Badcock, 2013). There is, however, considerable
support for the idea that HTT is not a good model of
PS and that SDT is preferable (Green & Swets, 1988;
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Laming, 2013; Nachmias, 1981; Shimozaki, Eckstein, &
Abbey, 2003; Tyler & Chen, 2000). This raises the
question of whether PS modeled according to SDT can
be rejected for area summation in circular textures.

The aim of this study is to measure signal integration
for a variety of Glass pattern and Glass-pattern-like
textures and to test whether the results accord with
probability or additive (of which a special case is linear)
summation. To do this we have not only measured
thresholds, but also the exponent b in the Quick-fitted
psychometric functions. The exponent b, which is
estimated from the fit to the data when the units of
stimulus intensity are ‘‘raw’’ i.e., linear units, is related
to the slope, or ‘‘steepness’’ of the psychometric
function, in that b characterizes the slope when the
units of stimulus intensity are plotted logarithmically
spaced, as shown later (see Discussion for an analysis
of the relationship between b and other measures of
psychometric function slope; Strasburger, 2001). His-
torically b has been, and continues to be widely
employed as a psychometric slope parameter for
modeling PS under both HTT and SDT (e.g., Bell &
Badcock, 2008; Loffler et al., 2003; Meese & Summers,
2012; Meese & Williams, 2000; Morrone et al., 1995;
Schmidtmann et al., 2012; Tan, Bowden, Dickinson, &
Badcock, 2015; Tan et al., 2013; Tyler & Chen, 2000;
Watson, 1979). To avoid any confusion however with
psychometric function ‘‘steepness,’’ we will refer to b as
the ‘‘exponent’’ of the psychometric function.

We measured b as a function of signal area under
conditions in which subjects were unaware of the
position of the signal sector, such that extrinsic
uncertainty decreased with signal area. Assuming that
intrinsic uncertainty is sufficiently low that our manip-
ulation of extrinsic uncertainty has a meaningful impact
on overall uncertainty, PS under SDT predicts a
decrease in b with increasing signal area because of the
resulting decrease in overall uncertainty (Kingdom,
Baldwin, & Schmidtmann, 2015; Meese & Summers,
2012; Pelli, 1985; Tyler & Chen, 2000), whereas PS
under HTT predicts no change in b (Mayer & Tyler,
1986). A failure to find such decreases in b would
therefore constitute a valid basis for rejecting PS under
SDT as a model for the detection of textures. This would
leave open the possibility that either additive (including
linear) summation, or probability summation under
HTT is the correct model of detection.

Methods

Subjects

Five psychophysically experienced observers partic-
ipated, three of the authors (BJJ, GS, and JB) and two

observers who were naı̈ve as to the purpose of the
study. All observers had normal or corrected-to-normal
visual acuity. Informed consent was obtained from
each observer, and all experiments were conducted in
accordance with the Declaration of Helsinki.

Apparatus

The stimulus patterns were generated using MAT-
LAB (MATLAB R 2013a, MathWorks, Natick, MA)
and presented on a gamma-corrected iiyama Vision
Master Pro 513 CRT monitor (Iiyama, Nagano, Japan)
running with a resolution of 1024 3 768 pixels and a
frame rate of 85 Hz (mean luminance 38 cd/m2), under
the control of an Apple Mac Pro (3.33 GHz). Observers
viewed the stimuli at a distance of 120 cm. At this
distance one pixel subtends 0.0188 of visual angle.
Experiments were performed in a dimly-illuminated
room. Routines from the Psychophysics Toolbox were
employed to present the stimuli (Brainard, 1997; Pelli,
1997).

Procedure

All experiments were carried out under binocular
viewing conditions. Observers completed short practice
runs prior to data collection. Using a 2-IFC paradigm
with the method of constant stimuli, the observer’s task
was to detect which of two successively presented
stimulus arrays contained the target texture. One of the
stimuli contained a variable fraction of oriented signal
elements (see the following material) distributed within
the signal area, the other contained noise only
(randomly oriented Gabors or dot-pairs). The stimuli
were presented on a midgray background. A trial
consisted of the first stimulus being presented for 500
ms, followed by a 300-ms blank inter-interval delay
(midgray blank screen), followed by the second
stimulus (order of stimulus presentation randomized).
In order to investigate the influence of a shorter
presentation time used in some previous studies on
Glass pattern detection, we conducted a control
experiment where the stimulus presentation time was
decreased to 160 ms (see Experiment 4). After the
second interval the observer was presented with the
blank midgray screen again and were then free to
submit their answer via a key press, if they were unsure
they were instructed to guess. If an incorrect answer
was submitted a short beep was heard. The key press
initiated the next trial. Ten different signal-to-noise
ratios were presented 20 times in each experimental
block in random order, resulting in 200 trials per sector
size/arrangement condition. Different sector sizes and
texture types were tested in a block design. Detection
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thresholds are defined as the ratio of signal-to-noise
elements in the signal areas of the texture. For instance,
a detection threshold of 0.5 means that 50% of the
elements (Gabors or dot-pairs) distributed throughout
the signal area (pie-wedge sector/s) had to be oriented
according to a texture type (circular, radial, spiral, or
parallel) in order to detect the texture.

Stimuli

The texture stimuli were polar arrays of oriented
Gabor patches or dot-pairs. The stimulus arrays were
circular with a diameter of 500 pixels, which in a
viewing distance of 120 cm subtended 9.28. The overall
stimulus size was the same as in Experiments 1–4. In all
experiments signal integration was determined by
measuring detection thresholds (signal-to-noise ratios)
as a function of signal area. The angular position
(clock-position) of the single or windmill-shaped pie-
wedge sectors was randomized on each trial in all
experiments with the exception of a control experiment,
where the orientation was fixed at 908 (see Experiment
1). Example stimuli are shown in Figure 1. For
illustration purposes, the pie-wedges containing the
signals are shaded in yellow.

Experiment 1: Low-density textures

The Low-density texture stimuli in Experiment 1
contained 150 Gabor elements with a spatial fre-
quency of 6 c/8. The circular-symmetric Gaussian
envelope of the odd-symmetric Gabor patches had a
standard deviation of 0.088. Detection thresholds were

Figure 1. Stimulus examples. For illustration purposes the pie-

wedges containing the signals are shaded in yellow. Integration

strength was determined by measuring detection thresholds as a

function of signal area. (A and B) Experiment 1 (Low-density) the

stimulus was composed of 150 Gabor patches. The signal

elements were restricted to a single pie-wedge shaped sector of

varying angular size ranging from 368 to 3608, corresponding to

signal areas ranging from 10% to 100% [A: circular 25% signal

area (908); B: radial 50% signal area (1808)]. (C and D) Experiment

2 (High-density) the total number of elements was increased to

3,000 to create a high density texture. The signal areas tested

were 368, 908, 1808, and 3608, corresponding to 10%, 25%, 50%,

�

 
and 100% signal areas [C: circular 10% signal area (368); D: spiral

25% signal area (908)]. (E and F) Experiment 3 (lower panel) the

stimulus was composed of 3,000 Gabor elements; the signal

elements were distributed in various pie-wedge configurations

extending over the entire array similar to previous studies using

Glass patterns. Detection thresholds were measured for 33%,

50%, and 100% signal area. For 33% signal area the signal

elements were distributed across four pie-wedge sectors with an

angular extent of 308 each, the 50% signal area stimulus had the

signal elements distributed between six pie-wedges each with an

angular extent of 308 [E: parallel 33% signal area (308); F: circular

50% signal area (308)]. (G and H) Glass patterns. The sector size

and design was identical to Experiment 4: Detection thresholds

were measured for 33%, 50%, and 100% signal area and for

circular, radial, spiral, and parallel Glass patterns, where the

signal elements were distributed in four or six pie-wedge shaped

sectors. G: circular 33% signal area (308); H: radial 100%. Note

that all stimulus examples are shown with high signal-to-noise

ratios.
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measured for four different texture types: (a) circular,
(b) radial, (c) spiral, and (d) parallel. The signal
elements were oriented according to the texture type
and noise elements were randomly oriented. The
signal elements in the radial texture pattern were
oriented such that their alignments converged on the
center of the texture array. The signal elements in the
circular textures were aligned tangentially to the
array’s radius. The orientation of the signal elements
in the spiral texture varied as a function of the radial
distance from the center of the array, such that the
orientations of the elements at the center and the edge
of the array differed by 608. The orientation of the
signal elements in the parallel texture was fixed at 908
(vertical). The position of the Gabors was randomly
determined given the following conditions: In the
Low-density stimulus the elements were forbidden
from overlapping, In Experiment 1 detection thresh-
olds were measured for signal areas of 10%, 12.5%,
16.67%, 25%, 32%, 37.5%, 50%, 62.5%, 75%, and
100%, which corresponded to angular extents of the
single pie-wedge sectors of 368, 458, 608, 908, 1158,
1358, 1808, 2258, 2708, and 3608, respectively. Example
stimuli are shown in Figure 1A and B.

Experiment 2: High-density textures

In order to investigate the influence of density, the
number of Gabor elements was increased from 150 to
2,000 for Experiment 2 (High-density texture). The
spatial frequency for these elements was 10 c/8. The
Gaussian envelope of the center-symmetric Gabor
patches had a standard deviation of 0.0348. A small
overlap of 0.0748 (;4 pixels) was tolerated in order to
produce tight packing. The signal elements were
restricted to one pie-wedge shaped sector. In Experi-
ment 2 the signal areas tested were 10%, 25%, 50%, and
100%, which corresponded to angular extents of 368,
908, 1808, and 3608. Example stimuli are shown in
Figure 1C and D.

Experiment 3: Windmill

In Experiment 3 the signal elements (2,000; same
density as in Experiment 2) were distributed in
various pie-wedge shaped sectors extending over the
entire array, similar to previous studies using Glass
patterns (Wilson et al., 1997; Wilson & Wilkinson,
1998). Detection thresholds were measured for 33%,
50%, and 100% signal area. For the 33% signal area
condition the signal elements were distributed among
four pie-wedge sectors each with an angular extent of
308, forming a Maltese-cross-like stimulus. For the
50% signal area condition the signal elements were
distributed among six pie-wedges each with an
angular extent of 308. Every second sector contained

noise only. Example stimuli are illustrated in Figure
1E and F.

Experiment 4: Glass patterns

The Glass patterns used in Experiment 4 were similar
to those used previously (Dakin & Bex, 2002; Wilson et
al., 1997; Wilson & Wilkinson, 1998). They were
composed of 3,000 white dot-pairs, with each dot
measuring 2 3 2 pixels (0.0368 3 0.0368). The dot
separation was set to 4 pixels (4.50, 0.0758). Wilson and
Wilkinson (1998) measured detection thresholds for
various dot separations ranging from 4.50 to 130 and
their results show that sensitivity is independent of
density. Given the pixel size and dot separation, the
Glass pattern design enabled eight different orienta-
tions of the dot pairs (08, 308, 458, 608, 908, 1208, 1358, &
1508). Dot overlap was not allowed. Analogous to
Experiment 3, detection thresholds were measured for
33%, 50%, and 100% signal area and for circular,
radial, spiral, and parallel Glass patterns, where the
signal elements were distributed in four or six pie-
wedge shaped sectors. Example stimuli are shown in
Figure 1G and H.

Data analysis

Percent correct responses were calculated and the
resulting data fitted with a Quick function (Quick,
1974) using a custom-routine maximum-likelihood
procedure based on binomial proportions, using
MatLab’s fminsearch function. The Quick function is:

Fðx; a; bÞ ¼ 1� 0:5 � 2 � x
að Þ

b
� �

ð1Þ
where x is the proportion of signal elements within each
signal sector, a is the proportion of signal elements
(Gabors or dot-pairs) within each sector required for
75% correct detection, and b is the exponent that is
related to the slope of the function.

Results

Experiment 1: Low-density textures

With the Low-density textures, the area of the single
signal sector ranged from 10% to 100% of the entire
stimulus. Detection thresholds a and exponents b were
estimated from the psychometric functions of propor-
tion correct as a function of proportion of signal
elements. Thresholds were measured for circular,
radial, spiral, and parallel textures. The results are
presented in Figure 2, where the left most graph shows
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Figure 2. Detection thresholds (a) and exponents (b) as a function of signal area for four different texture types: circular (blue circles),

radial (green circles), spiral (orange diamonds), and parallel (black squares). The left graphs show detection thresholds as a function of

signal area. Detection thresholds here and elsewhere are defined as the ratio of signal to noise elements in the signal areas of the

texture. Thresholds are averaged across subjects. The graphs in the middle show the detection thresholds for 100% signal area (right

most data point of graphs on the left). The graphs on the right show the average b values of the psychometric functions as a function

of signal area. b values are averaged across subjects and texture type. The average slopes of the power-law functions for each texture

type are provided in the brackets of the legend. The asterisk (*) indicates significant differences. Error bars here and elsewhere

represent 6 standard error of the means.
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detection thresholds a (averaged across all observers)
for each texture type and the right most graph shows
the values of b (averaged across observers and texture
types), both as a function of the signal area size
(percentage of total stimulus area).

Results show that thresholds decrease with in-
creasing signal area according to a power-law func-
tion, which results in a linear relationship when
plotted in log-log coordinates. The slope of the fitted
power-law function provides information about the
strength of summation. The individual slopes range
from �0.45 for the spiral texture to �0.56 for the
parallel texture. The average slope is �0.49 (SEM 6
0.024). The strength of summation is about half as
strong as reported by some investigators (Wilson et
al., 1997; Wilson & Wilkinson, 1998), but not others
(Dakin & Bex, 2002; Kurki et al., 2003; see Discus-
sion). A two-way repeated-measures ANOVA with
factors texture type and signal area showed a
significant decrease in threshold with increasing signal
area, F(9, 36) ¼ 71.87, p , 0.001, but no difference
between the different texture types, F(3, 12)¼ 3.612, p
¼0.108. The interaction term was not significant, F(27,
108) ¼ 1.016, p ¼ 0.455.

The middle graph in Figure 2 shows the detection
thresholds for 100% signal area (rightmost data
points in left graph) for all tested texture types. The
results were analyzed with a one-way ANOVA
(within-subjects) with the texture types as factor,
revealing a significant effect, F(3, 12) ¼ 8.237, p ¼
0.003. Subsequent post hoc test (Bonferroni correct-
ed, here and throughout) showed a significant
difference only between spiral and parallel textures
( p¼0.025). Performance is similar for circular, radial
and spiral texture and tends to be best for parallel
texture. This is contrary to previous results showing
much better performance for circular Glass patterns
(Wilson et al., 1997; Wilson & Wilkinson, 1998; cf.
Dakin & Bex, 2002). The same studies also showed
the poorest performance for parallel textures.

In a control experiment the clock position of the
sector was fixed vertically (908) and thresholds were
measured for signal areas of 10% and 50% for radial
and circular textures. Results show a small but not
significant decrease in threshold for small segment sizes
(10%), i.e., advantage gained through the reduction of
spatial uncertainty. Hence, the resulting summation is
even less strong (�0.42).

The rightmost graph in Figure 2 shows the average b
values as a function of signal area. b values range from
2.97 (SEM 6 0.21) for 10% signal area to 1.25 (SEM 6
0.097) for 100% signal area. This translates to a
decrease in b with signal area with a slope on a log–log
plot of�0.39 (SEM 6 0.021). The statistical treatment
of the b values will be described later in the modeling
section.

Experiment 2: High-density textures

Previous studies have tended to use very dense Glass
patterns, for instance Dakin and Bex (2002) used 1,966
dot-pairs. In order to investigate if density affects
summation strength, the number of Gabor elements per
array area was increased to 3,000, which is even denser
than the Glass patterns employed in previous studies
(Dakin & Bex, 2002; Wilson et al., 1997; Wilson &
Wilkinson, 1998).

Results in Figure 2 (High-density) show that
detection thresholds decrease with increasing signal
area following a power-law function with average
slopes of�0.39 (SEM 6 0.035). The summation slopes
are even shallower than in the Low-density experiment
and range between�0.27 for parallel textures to�0.43
for radial textures. A two-way repeated-measures
ANOVA (within-subjects) with factors of texture type
and signal area revealed a significant increase in
performance with increasing signal area, F(3, 12) ¼
81.97, p , 0.001, but no significant difference between
the four different texture types, F(3, 12) ¼ 1.711, p¼
0.218. No significant interactions were found, F(9, 36)¼
1.912, p ¼ 0.082.

In order to investigate whether the increased
density has an effect on detection sensitivity, we
statistically compared the sensitivity for the Low-
density stimuli in Experiment 1with the High-density
Experiment here for the four tested signal areas (10%,
25%, 50%, and 100%). Given that the statistical
analysis showed no significant differences for the
texture types in Experiments 1 and the High-density
textures here, we combined the thresholds for each
texture type. A two-way repeated-measures ANOVA
was conducted with density (Low-density, High-
density) and area (10%, 25%, 50%, and 100%) as
factors. Results show a significant effect for density,
F(1, 19) ¼ 81.881, p , 0.001, and area, F(3, 57) ¼
208.664, p , 0.001. Subsequent post hoc tests showed
significant differences between the two densities and
for all signal areas. Increasing the density leads to a
decrease in detection thresholds. The analysis re-
vealed a significant interaction between density and
area, F(3, 57) ¼ 31.055, p , 0.001, which reflects an
initial steeper decrease in thresholds with increasing
area.

The bar plot summarizes the detection thresholds for
100% signal area for all texture types (High-density)
and shows no statistically significant difference between
these, F(3, 12)¼ 1.449, p¼ 0.277. The average b values
range between 2.29 (SEM 6 0.23) for 10% signal area
and 1.352 (SEM 6 0.083) for 100% signal area. Similar
to the Low-density Experiment, b decreases with
increasing signal area [slope ¼�0.21 (SEM 6 0.024)],
as predicted by PS under SDT (see Discussion and
Figure 4).
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Experiment 3: Windmill design

Increasing the density for the Gabor textures led to
lower thresholds, but the summation strength was not
affected and is much less for both stimulus designs
compared to previous studies using Glass patterns
(Dakin & Bex, 2002; Wilson et al., 1997; Wilson &
Wilkinson, 1998). One additional explanation for the
differences in our results might be the way that the
signal elements are distributed with the stimulus
array. Previous studies in similar area summation
experiments have used a stimulus design in which the
array is split into several pie-wedge shaped sectors,
evenly distributed to form a windmill-like configura-
tion (Dakin & Bex, 2002; Morrone et al., 1995;
Wilson et al., 1997; Wilson & Wilkinson, 1998).
Experiment 3 was conducted to investigate whether
this difference in stimulus design could lead to such
different results.

The stimulus design was similar to the one used by
Wilson et al. (1997) and Wilson and Wilkinson (1998).
In this design the signal elements were distributed
between four (33% signal area) or six (50% signal area)
sectors that were in turn arranged into the windmill-like
pie-wedge sectors. The wedges between the signal areas
contained randomly orientated noise elements. The
100% signal area was equivalent to the 100% signal
area in Experiment 2. Similarly to the High-density
stimuli in Experiment 2, the entire stimulus array was
composed of 2,000 Gabor patches.

Results show that detection thresholds decrease with
increasing signal area following a power-law function
with slopes ranging between �0.53 for parallel and
spiral textures to �0.64 for circular textures. The
average slope is�0.57 (SEM 6 0.027), consistent with
the summation slopes measured in Experiments 1 and
2, but still only half the magnitude of the summation
slopes reported previously (Wilson et al., 1997; Wilson
& Wilkinson, 1998; cf. Dakin & Bex, 2002; Kurki et al.,
2003). Similar to the Low-density and High-density
stimuli, a two-way repeated-measures ANOVA re-
vealed significant effect of signal area, F(2, 8)¼ 34.918,
p , 0.001, but no significant difference in performance
is as a function of texture type, F(3, 12)¼ 1.02, p¼0.42.
No significant interaction was found. In a separate
statistical analysis (one-way ANOVA) we compared
the thresholds for the different texture types at 100%
signal area. There is a tendency for a superior
performance for circular textures, but the statistical
analysis reveals no significant differences between the
different textures, F(3, 12)¼ 1.461, p ¼ 0.274.

The average b values range from 2.016 (SEM 6

0.182) to 1.352 (SEM 6 0.083). Similar to the results in
Experiments 1 and 2, b decreases with increasing signal
area, with a log–log slope of �0.37 (SEM 6 0.12).

Experiment 4: Glass patterns

So far, all textures were composed of Gabor
elements. One might argue that despite the efforts to
match the Gabor textures to the Glass patterns used in
previous studies, by increasing density (Experiment 2),
fundamental differences remain and are responsible for
the discrepancy between the results with previous
studies (Dakin & Bex, 2002; Wilson et al., 1997; Wilson
& Wilkinson, 1998). We therefore generated Glass
patterns stimuli similar to those used by previous
studies. Our results show that detection decreased with
increasing signal area following a power-law function
with slopes ranging from�0.22 for spiral to �0.54 for
circular textures. The average slope, describing the
increase in performance with increasing signal area, is
�0.36 (SEM 6 0.067), similarly shallow the Gabor
textures in Experiment 3 (�0.37). A two-way ANOVA
with texture type and area as factors revealed
significant effects for both texture, F(3, 12)¼ 11.00, p¼
0.001, and area, F(2, 8) ¼ 18.652, p ¼ 0.001. No
significant interactions were found. Subsequent post
hoc tests showed that detection thresholds for spiral
Glass patterns were significantly higher compared to
circular (p ¼ 0.001) and radial Glass patterns (p¼
0.046). In a separate one-way ANOVA we compared
the detection thresholds for the different texture types
for 100% signal area. The analysis showed a significant
main effect, F(3, 9) ¼ 5.78, p ¼ 0.017. Additional post
hoc tests showed that detection thresholds for circular
Glass patterns were significantly lower than spiral ones
(p¼ 0.003). Analyzing detection thresholds for Gabor
textures at 100% signal area shows that performance is
similar for circular, radial, and parallel Glass patterns.
There is a bias towards a better performance for
circular and radial Glass patterns, but these effects are
not statistically significant. Furthermore, we compared
detection thresholds for each texture type for the
Gabor textures in Experiment 3 with the detection
thresholds for Glass patterns with separate one-way
ANOVAS. These revealed significant differences only
between the spiral textures, F(1, 3) ¼ 16.18, p ¼ 0.003,
showing that spiral Glass patterns are significantly
harder to detect than spiral Gabor textures. Interest-
ingly, there are no statistically significant differences
between all the other Glass patterns and the Gabor
textures, which suggests that the orientation informa-
tion can be equally sufficiently extracted from dot pairs
compared to oriented Gabors.

Some of the previous studies on Glass patterns used
different (shorter) presentation times and this might
account for the discrepancies between our and previous
results. We therefore conducted a control experiment
(N¼ 5) with a presentation time of 160 ms, which falls
within the range of earlier studies (Dakin & Bex, 2002:
147 ms; Wilson et al., 1997: 167 ms; Wilson &
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Wilkinson, 1998: 167 ms). The results are presented in
green dashed line and neither thresholds nor slopes are
significantly different compared with the 500 ms data.

Most importantly, as in all experiments before, b
decreases with increasing signal area, ranging from 2.24
(SEM 6 0.22) for 33% signal area to 1.53 (SEM 6
0.16) for 100% signal area. The average log–log slope of
b as a function of signal area is�0.35 (SEM 6 0.061).

Discussion

The aim of our experiments was to measure signal
integration for a variety of Glass-pattern-like textures
and to analyze the data in order to determine whether
probability summation (PS) under the assumptions of
signal-detection-theory (SDT) could be rejected as a
model of detection. To this end we measured not only
thresholds, but also the exponents of the psychometric
functions b as a function of signal area. If the positions/
orientations of the sectors containing the signals are
randomized on each trial, as in all our experiments, PS
under SDT predicts that b will decrease with signal area
(Meese & Summers, 2012; Tyler & Chen, 2000). This
was observed in all experiments. This is a novel result
that has significant consequences for how we interpret
increases in performance with signal area in textured
stimuli.

Results: Detection thresholds

Before considering the psychometric slope data in
more detail, it is important to compare our threshold
data with that from previous studies using similar
stimuli. Previous studies using circular Glass patterns
have reported threshold versus signal area slopes of
�1.0, as predicted by linear summation (Wilson et al.,
1997; Wilson & Wilkinson, 1998; cf. Dakin & Bex,
2002; Kurki et al., 2003). Taken together with other
evidence showing the highest detection sensitivities for
circular textures and shapes (Achtman et al., 2003;
Kelly et al., 2001; Kurki & Saarinen, 2004; Seu &
Ferrera, 2001; Wilson et al., 1997; Wilson & Wilkinson,
1998) researchers have concluded that there exist
specialized detectors for circular forms at intermediate
stages of form processing. These detectors, it is argued,
are composed of three processing stages: linear filtering
of local orientation information (V1) followed by a full-
wave rectification, local pooling by larger second-stage
filters (V2), and finally global linear pooling by neurons
in V4 (Wilson et al., 1997; Wilson & Wilkinson, 1998).

Irrespective of the actual underlying mechanisms,
however, it is important to reiterate that only some of
the observed summation slopes measured in these

previous studies reached values close to linear sum-
mation. For example, Wilson and Wilkinson (1998)
report much shallower summation slopes, on average
�0.69, for radial and parallel Glass patterns (their
figure 6). Wilson and Wilkinson account for these
shallower summation slopes by assuming different
weightings of the second stage of their model, resulting
in predicted summation slopes of �0.74 i.e., close to
their data. Dakin and Bex (2002) used a variety of
signal geometries in their Glass patterns: For the
circular patterns they employed a circular area whose
radius was varied rather than the pie-wedge sector used
here and by Wilson and colleagues; for the transla-
tional patterns, they used vertically oriented stripes as
well as alternating annuli. We have replotted the
rotational (circular) data from Dakin and Bex (2002;
their figure 6 b–d), and find slopes on average of�0.48,
which are much lower than�1.0 and indeed close to
those measured here. For the translational patterns we
find summation slopes of about�0.90 (their figure 6 e–
g), which are similar to the ones found by Wilson and
colleagues who used the pie-wedge sector design
(Wilson et al., 1997; Wilson & Wilkinson, 1998). Kurki
et al. (2003) measured spatial integration for circular
Glass patterns as well as patterns with random dot-pair
orientations (compared to random dot noise). They
report much lower summation slopes for the concentric
Glass patterns (�0.62) as well as the random-dot pair
conditions (�0.48).

In none of our conditions do we find summation
slopes close to linear summation, either for Gabor
textures or Glass patterns. Our slopes are on average
around�0.5 (low-density:�0.49; high-density:�0.36;
windmill:�0.57; Glass patterns:�0.36). One might have
supposed that the discrepancy between the Gabor

Figure 3. Parameters for calculating PS assuming SDT. N¼ noise

distribution, S ¼ signal-plus-noise distribution, d’ ¼ separation

between S and N distributions. t is a sample sensory

magnitude. U(t) and U(t-d’) are the areas under the N and S

distributions to the left of t. /(t) and /(t-d’), are the heights of

the N and S distributions at t. Reproduced from figure 3 in

Kingdom, F. A. A., Baldwin, A. S., & Schmidtmann, G. (2015).

Modeling probability and additive summation for detection

across multiple mechanisms under the assumptions of signal

detection theory. Journal of Vision, 15(5):1, 1–16, doi:10.1167/

15.5.1, with permission from the authors.
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textures we used and the Glass patterns of previous
studies was due to the inherent differences in their
stimulus structures, but our Glass pattern summation
slopes were no steeper than our Gabor pattern
summation slopes, and for various densities of the
Gabor patterns. Or and Elder (2011) recently showed
that sensitivity to Glass patterns increased by a factor of
1.8 when the dot pair was replaced with lines. However,
we found no differences in sensitivity between Glass
patterns and Gabor textures, with the exception of the
spiral stimuli. It therefore remains somewhat of a
mystery as to why the threshold versus signal area slopes
found here are shallower than in previous studies, and
why there is no difference in our study between the
thresholds for Glass patterns and Gabor textures.

Also in contradiction to some previous studies is that
we found no difference in sensitivities for detecting
circular and radial structure (e.g., see Kelly et al., 2001;
Kurki & Saarinen, 2004; Pei et al., 2005; Seu & Ferrera,
2001; Wilson et al., 1997; Wilson & Wilkinson, 1998).
Some of our results show a tendency towards the
hierarchy observed in previous studies, by which the
detection thresholds were found to be lowest for
circular texture, followed by radial, spiral, and parallel
(see Figure 2). However, the differences were not
significant except for the circular versus spiral Glass
pattern condition in Experiment 4.

Wilson et al. (1997) report that detection thresholds
for parallel Glass patterns are much higher (ranging
from 3.5 to 5x, their figure 2) than circular Glass
patterns. In contrast, our results for low-density textures
(Figure 2, Low-density) show that the performance
tends to be best for parallel textures (only in some cases
the parallel textures elicited the lowest thresholds). In
short, despite our best efforts to eliminate differences in
stimulus design, density, and presentation time, we find
detection sensitivities to be largely independent of
texture type. As a reminder, there have been previous

controversies over this issue. Dakin and Bex (2002)
found that the advantage for circular Glass patterns was
only evident if the stimulus was presented within a
circular window: Most of their results (7/9) showed no
superiority for circular structure and one subject even
showed an advantage for translational (parallel) Glass
patterns (see their figure 4).

Results: Exponent b

The main focus of this study was to analyze the data
with respect to whether or not PS under SDT could be
rejected as a model of area summation. The principal
data for addressing this issue are the psychometric
function b values, and, in particular, how they vary
with signal area.

Previous studies on area summation experiments
using stimuli other than Glass patterns have frequently
applied PS models based on HTT (e.g., Bell & Badcock,
2008; Dickinson et al., 2010; Dickinson, Harman, Tan,
& Almeida, 2012; Loffler et al., 2003; Schmidtmann et
al., 2012; Tan et al., 2013). This model assumes a high
threshold and therefore negligible false-positive re-
sponses. According to this model, thresholds fall with a
power-law slope of �1/b (Graham, 1989; Quick, 1974;
Robson & Graham, 1981; Watson, 1979). A complete
derivation from first principles of this model prediction
can be found in Kingdom and Prins (2016). Most
importantly, HTT predicts that b is constant across
signal area, as also predicted by additive (including
linear) summation models.

It is now generally accepted that SDT provides the
most appropriate model to describe underlying decision
processes observed in psychophysical experiments,
whether those processes involve probability or additive
summation (Green & Swets, 1988; Laming, 2013;
Nachmias, 1981; Shimozaki et al., 2003; Tyler & Chen,

Figure 4. SDT PS predictions for Quick thresholds a (left graph) and b (right graph) as a function of the number of stimuli n, for

different values of Q, the number of monitored mechanisms, ranging from 32 to 1,024. All predictions have been made for a system

with a transducer exponent of s¼ 1.125 (the mean of the values used to fit the data in Figure 6) and for a M¼ 2-IFC task. Note the

different logarithmic ranges on the ordinates of the two graphs.
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2000). In contrast to HTT, SDT alone predicts a
dependence of b on stimulus uncertainty when the
observer attends to all parts of the stimulus in which
the signal might occur (Meese & Summers, 2012; Tyler

& Chen, 2000). Our results consistently show that b
decreases with signal area, i.e., as uncertainty decreases,
as predicted by SDT. Although at a qualitative level
our results are therefore consistent with PS under SDT,
and not consistent with either PS under HTT, or
additive (including linear) summation, we wanted to
determine how quantitatively our data could be
modeled by PS under SDT.

Probability summation model

The detailed mathematical derivation of the model in
the following material is given in Kingdom et al. (2015).
The model is a development of the standard SDT model
for calculating proportion correct in M-AFC (M-IFC)
tasks (Green & Swets, 1988; Kingdom & Prins, 2016),
and generalizes the PS model of Shimozaki et al. (2003)
to include the full gamut of relevant parameters. As is
typical in SDT models, the noise-alone (‘‘noise’’) and
stimulus-plus-noise (‘‘stimulus’’) intervals/locations are
modeled as normal distributions with equal variance,
with signal intensity given in Z, i.e., standard deviation
units with respect to the center of the noise distribution.
The separation of the two distributions is symbolized by
d’, which is thus a measure of the internal strength of the
stimulus (Figure 3). The aim of the observer in a 2-IFC
task is to identify on each trial the interval containing
the target stimulus. The assumed strategy is the optimal
decision rule: select the interval with the biggest signal.
This is termed the MAX-rule.

Themodel is based on four quantities derived from the
two distributions, as illustrated in Figure 3. If t is the
intensity of a sample signal these are /(t) and /(t-d0),
which are the heights, or relative likelihoods of t in the
noise and stimulus distributions, and U(t) and U(t-d0),
which are the areas of the noise and stimulus distribu-
tions below t. Kingdom et al. (2015) showed that when
multiple stimuli are combined by PS, proportion correct
(Pc) detection is given by the following:

Pc ¼ n

Z‘
�‘

/ðt� d
0 ÞUðtÞQM�nUðt� d

0 Þn�1dt

þ ðQ� nÞ

Z‘
�‘

/ðtÞUðtÞQM�n�1Uðt� d
0 Þndt

ð2Þ
with

d
0 ¼ ðgsÞs ð3Þ

where M is the number of task intervals/alternatives
(here 2), Q the number of monitored channels, n the

Figure 5. Predictions of the PS model under SDT set against the

data. Left column: thresholds a: Right column: b. Threshold data are

shown in red and b in blue. The shaded regions show 6SEMs.

Model predictions for a-versus-n slopes are shown by the red and for

b-versus-n slopes by the green lines in each graph. The best-fitting

exponent of the transducer function s is indicated for each pair of

graphs. No scaling was applied to the model prediction for b. The

goodness of fit was evaluated by R
2, which is given in each graph.

The p-value in each graph refers to the statistical significance of the

correlation between the model predication and the observed data.
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number of those channels containing stimulus (signal), s
the exponent of the transducer, s the intensity, or
amplitude of the stimulus, and g a stimulus intensity
scaling factor. Equation 2, which uses numerical
integration, has been verified byMonte Carlo simulation,
and is implemented by the routine PAL_SDT_PS_SL-
toPC in the Palamedes Toolbox (Prins & Kingdom,
2009). The routine calculates proportion correct for any
s, g, s, M, Q, and n. Equation 2 can be thought of as an
equation for a psychometric function, since it describes
Pc as a function of stimulus strength s, given the
parameters g, s, Q, and n. It may be used therefore to
simulate psychometric functions of Pc against s, which
can then be fitted with a conventional psychometric
function such as a Weibull or Quick function (Kingdom
et al., 2015). That is howwe have used it here.We employ
Equation 2 to simulate psychometric functions, which
are then fitted with Quick functions. This enables us to
determine how Quick function parameters such as
threshold a and exponent b vary with the parameters n, s,
and Q (see again Kingdom et al., 2015).

Before considering how well the PS model fares with
our data, we provide an overview of how a and b in the
Quick function would be expected to vary as a function
of both Q and n, using simulated psychometric
functions generated from the model as described above.
To do this we set the scaling factor g to unity, M to 2
and the transducer exponent s to 1.125, which we found
to be the average value that best fitted the data, as
described in the following material. Then, for each
combination of Q and n, we used 30 equally-spaced
values of s and generated a psychometric function that
spanned the range 50% to 99.9% correct (less than
100% to avoid d’ becoming infinity). Each function was
then fitted by a Quick function and the threshold a and
exponent b estimated.

Figure 4 shows how both a and b are predicted to
decline with n for various values of Q. Table 1 presents
the slopes of the decline when a straight line is fitted to
portions of the log—log model data. As Table 1 shows,
the modelled decline in a and b varies to some extent
with Q as well as the range of n selected, with least

variation across Q when only the upper 33% to 100% of
n is selected.

We now apply the PS model to our data. Our
approach is first to concentrate on the b values because
for b there are only two free model parameters, the
exponent on the transducer s and the number of
monitored channels Q (for a there are three free
parameters, g, s, and Q, where g is the stimulus
intensity scaling factor). In the context of our stimuli
and model, Q can be thought of as the number of
independently-monitored regions of the stimulus. The
model proposed here may be considered as a proba-
bility summation version of the model previously
suggested for concentric Glass patterns (Wilson et al.,
1997; Wilson & Wilkinson, 1998; Wilson & Wilkinson,
2015). This model consists of three processing stages:
(1) First-stage local orientation filters, e.g., V1 simple
cells, followed by a full-wave rectification, (2) pooling
by larger second-stage filters in V2, and (3) global
pooling across the whole stimulus by neurons in V4
(Wilson et al., 1997; Wilson & Wilkinson, 1998).
Wilson and colleagues’ second-stage filters, which act
like end-stopped cells, are designed to extract local
curvature (V2; see also Dobbins, Zucker, & Cynader,
1987; Wilson, 1999). Their responses are then linearly
pooled by the third stage (V4). However, Wilson et al.’s
(1997) model is conceivable without this intermediate
stage, whereas in our model the stage is necessary to
encode the local geometric arrangement of the elements
(e.g., circular, radial, etc.) prior to the final probability
summation stage. It is important to emphasize that the
size of the putative second-stage filters, or the number
and size of their first-stage inputs, is not specified in
Wilsons (1997) model and, to our knowledge, there is
no consensus from either psychophysics or physiology
as to what their values might be. Hence, we can only
speculate about the size of the second-stage filters and
their degree of spatial overlap, and hence only speculate
as to the precise value of Q, the number of monitored
channels/filters. As in Wilson et al.’s model, we assume
that the second-stage filters and their first-stage inputs
are oriented to match the local parts of the stimulus. In
other words, the visual system, even though it

Q

a-vs.-n slope a-vs.-n slope a-vs.-n slope b-vs.-n slope b-vs.-n slope b-vs.-n slope

0–100% 10–100% 33–100% 0–100% 10–100% 33–100%

32 �0.44 �0.47 �0.51 �0.20 �0.23 �0.25
64 �0.39 �0.47 �0.53 �0.18 �0.24 �0.26
128 �0.36 �0.44 �0.50 �0.17 �0.24 �0.26
256 �0.33 �0.44 �0.49 �0.17 �0.24 �0.26
512 �0.31 �0.43 �0.49 �0.16 �0.25 �0.26
1,024 �0.29 �0.42 �0.48 �0.15 �0.25 �0.26

Table 1. Model a-versus-n and b-versus-n slope values from Figure 5, calculated for different Q values (32, 64, 128, 256, 512, 1,024)
and for different ranges of n. Slope values are best fitting straight lines through the log-log data. The ranges of n are 0–100%, 10–
100%, and 33–100%.
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probability summates the outputs of those second-stage
filters via the MAX-rule, monitors the totality of filters
that are matched to the particular stimulus arrange-
ment (circular, radial, etc.). We initially explored
various combinations of s and Q to determine which
combinations minimized the difference between model
and data, but for nearly all conditions we were unable
to find an optimum value of Q. The reason for this is

that the observed b-versus-n slopes were in nearly all
cases slightly steeper than the model b-versus-n slopes,
whichever value of Q we tried (up to 5,000). It should
be born in mind, however, that Q (unlike s) has only a
small effect on the absolute model values of b and a
negligible effect on the b-versus-n slopes, as can be seen
in Table 1. Despite the nondependency of the modeled
results on Q, we have chosen to use different values of
Q for each experiment. The values are chosen according
to the number of Gabor elements or dot-pairs used in
each stimulus. Specifically, Experiment 1 Low-density:
Number of elements (NoE)¼ 150, Q¼ 75; Experiments
2 and 3 High-density and Windmill: NoE¼ 2,000, Q¼
1,000; Experiment 4 Glass patterns: NoE¼ 3,000, Q¼
1,500. Having set the value of Q, we then found the
optimal value of s for the b data, and used this value to
predict the a-versus-n slopes (for which the stimulus
scaling factor g is arbitrary). Note, however, that the
fundamental difference between Wilson et al.’s (1997,
1998) Glass pattern model and our model is the final
pooling stage of the second-level filters, which are
pooled linearly in Wilson et al.’s model, but in our
model summed by probability summation.

Figure 5 and Table 2 shows the results of this
modeling exercise. In Figure 5, the model a values have
been scaled vertically to fit the data—however, this
does not affect the model’s critical a-versus-n slopes.
No scaling is applied to the b values. Figure 5 shows the
model fits to the data as green lines, and Table 2
provides a comparison between model and data a-
versus-n as well as b-versus-n slope values. Except for
Experiment 2, the model slightly underestimates the
decline of b with signal area but otherwise captures the
decline in both a and b with increasing signal area very
well. The goodness of fit between the model and the
data was evaluated by calculating the coefficient of
determination R2 for each experiment, which is given
for each graph in Figure 5. In order to validate the
model predictions statistically, one-tailed significance
probability values of the correlation coefficient R
between data and model predictions for both a and b
were calculated and p-values are stated in each graph of
Figure 6. Note, that for four out of the eight conditions
the p , 0.05 significance level is not reached owing to
the fact that, in spite of the high correlation, the
number of data points is only three (Figure 5E and F
and Figure 5G and H, respectively). The small sample
size is due to the reuse of the windmill stimulus design
used in previous studies (Wilson et al., 1997; Wilson &
Wilkinson, 1998), in order to enable consistent
comparisons between studies.

It should be reiterated that the predictions are not
critically dependent on the exact value of Q that we
chose: Whatever value we had chosen, the decline in b
with signal area would have been predicted, though
slightly less well had we chosen smaller values of Q.

Figure 6. (A) shows individual psychometric functions for one

subject for Experiment 2 (Low-density). The legend summarizes

the Quick exponents b and the derivatives [F 0(x,b)] for each
signal area. (B) shows the data expressed as derivatives as a

function of the number of stimulated channels n as well as the

additive (blue line) and probability summation (green line)

prediction to exemplify the relationship between b and the

derivative. (C) and (D) show an example closer to the average

data presented in Figure 5. (E) and (F) show the average

exponent b and the derivatives of the Quick psychometric

function across all subjects (N ¼ 5) for Experiment 2 (Low-

density textures) as a function of stimulated channels n. When

data are expressed as derivatives, additive summation predicts

a steep increase with increasing number of stimulated channels

(blue line), whereas probability summation (green line) predicts

a much shallower increase of the slope (derivatives).
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Model predictions for psychometric function
slopes measured as derivatives

In addition to the analysis of the exponent b, we
have also analyzed model predictions with respect to
the derivative of the psychometric function (see Stras-
burger, 2001, for an analysis of the relationship
between b and other measures of psychometric function
slope). The derivative of the Quick function is:

F 0ðx; a;bÞ ¼ ð1� cÞ � 2 � x
að Þ

b
� �

� ðx a= Þb�1 � b
2

ð4Þ
Figure 6A shows individual psychometric functions

for one observer for Experiment 1 (Low-density). The
legend summarizes the values of b and the derivatives
of the psychometric functions. Note that for this
observer b drastically decreases with increasing signal
area (b ranges from 4.49–1.83). However across
observers, the average decline in b (see Figure 5 and
graphs in left column of Figure 2) is more subtle
(Experiment 1 b; range: 2.97–1.25; Experiment 2: 2.29–
1.352; Experiment 3: 2.016–1.55; Experiment 4: 2.24–
1.53). The extreme subject’s decline in b leads to the
decrease in slopes as measured by the derivative of the
psychometric functions, despite the fact that our model
predicts an increase in the derivatives. Figure 6 shows
plots of the derivatives of the extreme subject case (6B),
a more typical subject case (6D), and the average of the
derivatives across subjects (N¼ 5; 6F) for this
condition, with each plot also showing the AS and PS
predictions of our model.

According to Kingdom et al. (2015) additive
summation (AS) for stimulus components of equal
strength is defined as:

d
0 ¼ nðgsÞsffiffiffiffi

Q
p ð5Þ

Note that for the derivatives the AS prediction is a
very steep increase with increasing number of stimu-
lated channels (blue line), whereas the PS (green line)
prediction is a much shallower increase. Despite the
slight decrease in the derivatives in the extreme
subject’s case (6B), PS still provides a much closer fit to
the observed data than does AS. The fit is closer still for

the derivatives for the typical (6D) and average (6F)
cases. The bottom left figure in the plot shows average
data and model predictions for the exponent b.

In summary, despite the decrease in the derivatives
with increasing number of stimulated channels in the
extreme subject’s case, PS fits the data for this subject
far better than does AS, and better still for the typical
subject and average subjects’ data. Hence, the SDT PS
model accounts for the data better than the SDT AS
model, even when based on an analysis of the steepness
(derivative) of the psychometric function.

An alternative explanation: Matched linear
filters?

Meese (personal communication) has suggested an
alternative explanation for why b declines with signal
area that does not preclude the possibility that the
maximum, i.e., whole-area signal condition is detected
by a global linear integrator. He suggests that the visual
system might employ linear filters matched in shape to
the various signal-shape conditions. Thus for the single
pie-wedge and windmill conditions these would be pie-
wedge and windmill-shaped filters matched to the
signal area, culminating in full-circle global linear
integrators for the 100% signal area conditions.

Following the schematic of summation scenarios in
Meese and Summers (2012), the matched filter model is
illustrated in Figure 7, along with the ‘‘pure’’ PS model
that we advanced previously and, for comparison, a
‘‘pure’’ linear summation model. For simplicity of
exposition we will refer to the matched filter model
simply as the ‘‘mixed’’ model, since it combines both
linear filtering with PS across filter/stimulus positions.
According to the mixed model, the decline in b with
increasing signal area reflects the reduction in uncer-
tainty as the matched filter grows to fill-up the stimulus
area. Remember that with the pie-wedge shaped and
windmill-shaped signals, their orientations were ran-
domized on each stimulus presentation. This means
that if we consider the matched filter as capturing all
the signals in each signal-area condition, the number of
nonsignal locations that the filter would likely sample,
would decline with increasing signal area. From the
point of view of the MAX-rule it means that the visual

Experiment Data a-vs.-n slope Model a-vs.-n slope Data b-vs.-n slope Model b-vs.-n slope

1. �0.49 (SEM 6 0.024) �0.47 �0.39 (SEM 6 0.021) �0.23
2. �0.39 (SEM 6 0.035) �0.45 �0.21 (SEM 6 0.024) �0.24
3. �0.57 (SEM 6 0.027) �0.48 �0.37 (SEM 6 0.12) �0.26
4. �0.36 (SEM 6 0.057) �0.48 �0.35 (SEM 6 0.061) �0.26

Table 2. Comparison between data and model a-versus-n and b-versus-n slope values and Table 1. The ranges of n are 10–100% for
Experiments 1 and 2, and 33–100% for Experiments 2 and 3.
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system would examine independently each possible
signal location with the matched filter and select the
interval containing the maximum filter response. In
terms of the SDT PS formulation described above, the
relationships between Q (number of monitored chan-
nels or stimulus locations), n (number of signals), and
signal area A are therefore different for the mixed
compared to the pure PS model advanced above. In the
pure PS model, Q is fixed and as signal area A is
increases and so is n. In the matched filter model it
works the other way round: as signal area A increases n
remains fixed and Q declines.

We have applied the SDT PS formula to the mixed
model situation. To understand how in principle the
model can account for our results we begin with some
reasonable assumptions. Throughout the modeling we
assume an n of 1, that is, we consider the area
containing the signal to stimulate a single matched
filter, i.e., a single stimulus/channel. We define A, the
area of the signal (and matched filter) as the percentage

of total stimulus area. We then assume that each
matched filter integrates N local samples from the
stimulus, with N being equal to the area of the matched
filter, i.e., ranging from 10 to 100. By ‘‘local samples’’
we mean local input signals with their own independent
noise sources (see Figure 7). Finally, we assume that Q,
which embodies the degree of uncertainty in the model,
is equal to 100/A, thus ranging from 10 to 1 as signal
area increases from 10% to 100%. In other words, as
the signal area and with it matched filter area increases,
the number of nonsignal locations sampled on each
trial by the matched filter, Q-1, declines proportion-
ately.

To obtain the a-versus-A and b-versus-A slope
predictions we use the PS formula in Equation 2, with
n set to 1 and Q ranging from 10 to 1. Note that in the
limiting case when n¼Q¼ 1 Equation 2 reduces to the
standard formula for calculating proportion correct
for a single signal in an M-AFC task according to the
MAX-rule under SDT (Kingdom & Prins, 2016). The
linear summation component of the mixed model is
achieved by computing for each condition d’ ¼
(gs)s=N with g (stimulus gain) and s (transducer
exponent) set to unity. A s of 1 is the model value
needed to produce the average b of 1.3 observed in the
100% signal area condition. The term =N captures the
fact that for a linear filter as N increases the amount of
internal noise increases in proportion to the square
root of the number of noise samples (because N/=N¼
=N). Psychometric functions of proportion correct as
a function of stimulus strength s were then calculated
for the 10 values of Q and fitted by Quick functions as
described previously. The resulting a-versus-A and b-
versus-A plots were then fitted as before by a straight
line applied to the log–log data. The resulting slopes of
the mixed model are �0.79 for a-versus-A and �0.184
for b-versus-A. These values are what one would
expect from a mixed linear and PS model. The pure PS
model predictions were�0.42 for the average a-versus-
A slopes and �0.25 for average b-versus-A slopes. A
pure linear summation model (under the fixed
attention window scenario) would predict an a-versus-
A slope of�1.0 and a b-versus-A slope of 0. The mixed
model slopes therefore fall in between their corre-
sponding pure probability and linear summation
model values.

It is clear, however, that with the mixed model as it
stands, the a-versus-A slope of�0.79 is too steep and
the b-versus-A slope of�0.184 too shallow compared
to the data, whose average values are �0.44 and
�0.30, respectively. If we make N proportional to Aj

and set j to 0.25 instead of 1.0, we can achieve an a-
versus-A slope of �0.44. This would mean that the
density of local samples integrated by the matched
filter declines with the fourth root of the size of the
filter, which to us seems implausible. Regarding the

Figure 7. Three possible summation scenarios. The schematic

follows that of figure 1 in Meese & Summers (2012). The filled

black circles illustrate signal elements, whereas the empty

circles illustrate noise elements. The bottom illustration

illustrates the matched filter model (i.e., mixed model), where

summation occurs over different groups of elements. See text

for details.
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b-versus-A slope, its steepness is determined by the
rate at which Q declines as a function of signal area,
so it is clear that the mixed model rate of decline is
insufficient to predict the data. However, it is not
obvious to us what plausible mechanism would
increase the rate of decline of Q with signal area. If
rather than discretely positioning the matched filter
on the available nonsignal location in order to tile the
stimulus, the visual system performed a continuous
convolution of the matched filter with the stimulus,
i.e., ‘‘around the clock,’’ this would presumably not
increase the rate of Q decline, or if anything reduce it.
Thus while the matched filter model is an important
theoretical possibility, it does not appear to account
for the data as well as the pure PS model advanced
above, at least for the type of stimuli considered here.

Summary and conclusion

The main focus of this study was to test whether
probability summation (PS) under signal-detection-
theory (SDT) could be rejected as a model of signal
integration in Glass pattern and Glass-pattern-like
textures. We exploited one of the PS model’s signature
predictions: The exponent b of the psychometric
functions should decrease as signal area is increased.
Our results showed this characteristic, both in Glass
patterns and Gabor textures. In addition, we found
that the strength of summation across signal area was
approximately half as strong as some previous reports.
Moreover, we found no evidence for specialized
detectors for circular textures; detection sensitivity was
independent of texture type. Taken together, our
findings show that probability not linear summation is
the most likely basis for the detection of circular
orientation-defined textures, and provide no support
for the idea of specialized detectors for circular textures
in vision.

Keywords: texture detection, glass pattern, global
processing, probability summation, linear summation,
additive summation, Signal Detection Theory, high
threshold theory
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